Self-Assembly and Selective Guest Binding of Three-Dimensional Open-Framework Solids from a Macrocyclic Complex as a Trifunctional Metal Building Block

Author(s):  
Kil Sik Min ◽  
Myunghyun Paik Suh
2010 ◽  
Vol 75 (4) ◽  
pp. 459-473 ◽  
Author(s):  
Pu Zhao ◽  
Xian Wang ◽  
Fang Jian ◽  
Jun Zhang ◽  
Lian Xiao

p-Hydroxybenzoic acid (p-HOBA) was selected as the building block for self-assembly with five bases, i.e., diethylamine, tert-butyl amine, cyclohexylamine, imidazole and piperazine, and generate the corresponding acid-base complexes 1-5. Crystal structure analyses suggest that proton-transfer from the carboxyl hydrogen to the nitrogen atom of the bases can be observed in 1-4; while only in 5 does a solvent water molecule co-exists with p-HOBA and piperazine. With the presence of O-H?O hydrogen bonds in 1-4, the deprotonated p-hydroxybenzoate anions (p-HOBAA-) are simply connected each other in a head-to-tail motif to form one-dimensional (1D) arrays, which are further extended to distinct two-dimensional (2D) (for 1 and 4) and three-dimensional (3D) (for 2 and 3 ) networks via N-H?O interactions. While in 5, neutral acid and base are combined pair wise by O-H?N and N-H?O bonds to form a 1D tape and then the 1D tapes are sequentially combined by water molecules to create a 3D network. Some interlayer or intralayer C-H?O, C-H?? and ??? interactions help to stabilize the supramolecular buildings. Melting point determination analyses indicate that the five acidbase complexes are not the ordinary superposition of the reactants and they are more stable than the original reactants.


2002 ◽  
pp. 171-175 ◽  
Author(s):  
Tapas Kumar Maji ◽  
Sanjit Konar ◽  
Golam Mostafa ◽  
Ennio Zangrando ◽  
Tian-Huey Lu ◽  
...  

2015 ◽  
Vol 57 ◽  
pp. 44-46 ◽  
Author(s):  
Ji Hye Park ◽  
Ah Rim Jeong ◽  
Jong Won Shin ◽  
Maeng Jun Jeong ◽  
Chan Sik Cho ◽  
...  

Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


2015 ◽  
Vol 71 (4) ◽  
pp. 330-337 ◽  
Author(s):  
Sabina Kovač ◽  
Ljiljana Karanović ◽  
Tamara Đorđević

Two isostructural diarsenates, SrZnAs2O7(strontium zinc diarsenate), (I), and BaCuAs2O7[barium copper(II) diarsenate], (II), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The three-dimensional open-framework crystal structure consists of corner-sharingM2O5(M2 = Zn or Cu) square pyramids and diarsenate (As2O7) groups. Each As2O7group shares its five corners with five differentM2O5square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine-coordinatedM1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of theM1O9,M2O5and As2O7groups of known isostructural diarsenates, adopting the general formulaM1IIM2IIAs2O7(M1II= Sr, Ba, Pb;M2II= Mg, Co, Cu, Zn) and crystallizing in the space groupP21/n, are presented and discussed.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Jing-Wei Yu ◽  
Hai-Jiao Yu ◽  
Zhi-Yuan Yao ◽  
Zi-Han Li ◽  
Qiu Ren ◽  
...  

A water stable proton-conducting material (NH4)5[Zr3(OH)3F6(PO4)2(HPO4) (ZrP) was hydrothermally synthesized. The three-dimensional (3D) framework of ZrP is composed of ZrF2O4 octahedra and HxPO4 phosphate units and forming 18-ring channels through...


Sign in / Sign up

Export Citation Format

Share Document